skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gore, Jeff"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In microbial communities, various cell types often coexist by occupying distinct spatial domains. What determines the shape of the interface between such domains—which, in turn, influences the interactions between cells and overall community function? Here, we address this question by developing a continuum model of a 2D spatially structured microbial community with two distinct cell types. We find that, depending on the balance of the different cell proliferation rates and substrate friction coefficients, the interface between domains is either stable and smooth or unstable and develops fingerlike protrusions. We establish quantitative principles describing when these different interfacial behaviors arise and find good agreement with both the results of previous experimental reports as well as new experiments performed here. Our work, thus, helps to provide a biophysical basis for understanding the interfacial morphodynamics of proliferating microbial communities as well as a broader range of proliferating active systems. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. In microbial communities, various cell types often coexist by occupying distinct spatial domains. What determines the shape of the interface between such domains—which in turn influences the interactions between cells and overall community function? Here, we address this question by developing a continuum model of a 2D spatially-structured microbial community with two distinct cell types. We find that, depending on the balance of the different cell proliferation rates and substrate friction coefficients, the interface between domains is either stable and smooth, or unstable and develops finger-like protrusions. We establish quantitative principles describing when these different interfacial behaviors arise, and find good agreement both with the results of previous experimental reports as well as new experiments performed here. Our work thus helps to provide a biophysical basis for understanding the interfacial morphodynamics of proliferating microbial communities, as well as a broader range of proliferating active systems. 
    more » « less